Corrigenda

Anodic oxidation of 3,5-dihalogenotyrosines as a model reaction for the biogenesis of the cavernicolins, metabolites of the verongid sponge *Aplysina cavernicola*

M. Cavazza, G. Guella, L. Nucci, F. Pergola, N. Bicchierini and F. Pietra

J. Chem. Soc., Perkin Trans. 1, 1993, 3117.

Page 3119, formulae 8 and page 3120, left-hand column, lines 25 and 26: An extra hydrogen atom has been added to the nitrogen in formula 8 and NMR data for it have been reported in the Experimental section; both the hydrogen atom and the data recorded for it should be deleted.

Thermal decomposition of homoquinones

Takumi Oshima, Kazushi Tamada and Toshikazu Nagai

J. Chem. Soc., Perkin Trans. 1, 1994, 3325.

Page 3333, ref. 7a: insert B. Halton as the last author.

Photoinduced molecular transformations. Part 155. General synthesis of macrocyclic ketones based on a ring expansion involving a selective β -scission of alkoxyl radicals, its application to a new synthesis of (\pm)-isocaryophyllene and (\pm)-caryophyllene, and a conformational analysis of the two sesquiterpenes and the radical intermediate in the synthesis by MM3 calculations

Hiroshi Suginome,* Takahiko Kondoh, Camelia Gogonea, Vishwakarma Singh, Hitoshi Goto and Eiji Ōsawa

J. Chem. Soc., Perkin Trans. 1, 1995, 69.

Page 70, Scheme 1: delete Scheme 1 and insert the following:

OH

6 X = OH,
$$m = 1, n = 3$$

1 $n = 3$

1 $n = 3$

1 $n = 5$

1 $n = 3$

2 $n = 5$

1 $n = 5$

1 $n = 3$

2 $n = 5$

1 $n = 3$

3 $n = 1, n = 3$

4 $n = 1, n = 5$

1 $n = 3$

1 $n = 3$

2 $n = 5$

1 $n = 3$

3 $n = 1, n = 3$

4 $n = 1, n = 3$

1 $n = 3$

2 $n = 5$

[©] Copyright 1995 by the Royal Society of Chemistry